Dual color optogenetic tool enables heart arrest, bradycardic, and tachycardic pacing in Drosophila melanogaster
In order to facilitate cardiovascular research to develop non-invasive optical heart pacing methods, we have generated a double-transgenic Drosophila melanogaster (fruit fly) model suitable for optogenetic pacing. We created a fly stock with both excitatory H134R-ChR2 and inhibitory eNpHR2.0 opsin t...
Gespeichert in:
Veröffentlicht in: | Communications biology 2024-08, Vol.7 (1), p.1056-10 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In order to facilitate cardiovascular research to develop non-invasive optical heart pacing methods, we have generated a double-transgenic
Drosophila melanogaster
(fruit fly) model suitable for optogenetic pacing. We created a fly stock with both excitatory H134R-ChR2 and inhibitory eNpHR2.0 opsin transgenes. Opsins were expressed in the fly heart using the Hand-GAL4 driver. Here we describe
Hand
>
H134R-ChR2; eNpHR2.0
model characterization including bi-directional heart control (activation and inhibition) upon illumination of light with distinct wavelengths. Optical control and real-time visualization of the heart function were achieved non-invasively using an integrated light stimulation and optical coherence microscopy (OCM) system. OCM produced high-speed and high-resolution imaging; simultaneously, the heart function was modulated by blue (470 nm) or red (617 nm) light pulses causing tachycardia, bradycardia and restorable cardiac arrest episodes in the same animal. The irradiance power levels and illumination schedules were optimized to achieve successful non-invasive bi-directional heart pacing in
Drosophila
larvae and pupae.
Optical control and real-time beating heart visualization of
Hand
>
H134R-ChR2; eNpHR2.0 Drosophila
were achieved non-invasively using an integrated light stimulation and optical coherence microscopy (OCM) system. |
---|---|
ISSN: | 2399-3642 2399-3642 |
DOI: | 10.1038/s42003-024-06703-7 |