Quantum gene regulatory networks

In this work, we present a quantum circuit model for inferring gene regulatory networks (GRNs) from single-cell transcriptomic data. The model employs qubit entanglement to simulate interactions between genes, resulting in competitive performance and promising potential for further exploration. We a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:npj quantum information 2023-07, Vol.9 (1), p.67-8, Article 67
Hauptverfasser: Roman-Vicharra, Cristhian, Cai, James J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we present a quantum circuit model for inferring gene regulatory networks (GRNs) from single-cell transcriptomic data. The model employs qubit entanglement to simulate interactions between genes, resulting in competitive performance and promising potential for further exploration. We applied our quantum GRN modeling approach to single-cell transcriptomic data from human lymphoblastoid cells, focusing on a small set of genes involved in innate immunity regulation. Our quantum circuit model successfully predicted the presence and absence of regulatory interactions between genes, while also estimating the strength of these interactions. We argue that the application of quantum computing in biology has the potential to provide a better understanding of single-cell GRNs by more effectively approaching the relationship between fully interconnected genes compared to conventional statistical methods such as correlation and regression. Our results encourage further investigation into the creation of quantum algorithms that utilize single-cell data, paving the way for future research into the intersection of quantum computing and biology.
ISSN:2056-6387
2056-6387
DOI:10.1038/s41534-023-00740-6