An End-to-End Atrous Spatial Pyramid Pooling and Skip-Connections Generative Adversarial Segmentation Network for Building Extraction from High-Resolution Aerial Images
Automatic building extraction based on high-resolution aerial imagery is an important challenge with a wide range of practical applications. One of the mainstream methods for extracting buildings from high-resolution images is deep learning because of its excellent deep feature extraction capability...
Gespeichert in:
Veröffentlicht in: | Applied sciences 2022-05, Vol.12 (10), p.5151 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Automatic building extraction based on high-resolution aerial imagery is an important challenge with a wide range of practical applications. One of the mainstream methods for extracting buildings from high-resolution images is deep learning because of its excellent deep feature extraction capability. However, existing models suffer from the problems of hollow interiors of some buildings and blurred boundaries. Furthermore, the increase in remote sensing image resolution has also led to rough segmentation results. To address these issues, we propose a generative adversarial segmentation network (ASGASN) for pixel-level extraction of buildings. The segmentation network of this framework adopts an asymmetric encoder–decoder structure. It captures and aggregates multiscale contextual information using the ASPP module and improves the classification and localization accuracy of the network using the global convolutional block. The discriminator network is an adversarial network that correctly discriminates the output of the generator and ground truth maps and computes multiscale L1 loss by fusing multiscale feature mappings. The segmentation network and the discriminator network are trained alternately on the WHU building dataset and the China typical cities building dataset. Experimental results show that the proposed ASGASN can accurately identify different types of buildings and achieve pixel-level high accuracy extraction of buildings. Additionally, compared to available deep learning models, ASGASN also achieved the highest accuracy performance (89.4% and 83.6% IoU on these two datasets, respectively). |
---|---|
ISSN: | 2076-3417 2076-3417 |
DOI: | 10.3390/app12105151 |