Semilocal Convergence Analysis for Inexact Newton Method under Weak Condition

Under the hypothesis that the first derivative satisfies some kind of weak Lipschitz conditions, a new semilocal convergence theorem for inexact Newton method is presented. Unified convergence criteria ensuring the convergence of inexact Newton method are also established. Applications to some speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Abstract and Applied Analysis 2012-01, Vol.2012 (1), p.2018-2030-817
Hauptverfasser: Xu, Xiubin, Xiao, Yuan, Liu, Tao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Under the hypothesis that the first derivative satisfies some kind of weak Lipschitz conditions, a new semilocal convergence theorem for inexact Newton method is presented. Unified convergence criteria ensuring the convergence of inexact Newton method are also established. Applications to some special cases such as the Kantorovich type conditions and γ-Conditions are provided and some well-known convergence theorems for Newton's method are obtained as corollaries.
ISSN:1085-3375
1687-0409
DOI:10.1155/2012/982925