Trajectory Tracking Control of Remotely Operated Vehicles via a Fast-Sliding Mode Controller with a Fixed-Time Disturbance Observer

Time-varying nonlinear external disturbances, as well as uncertainties in model and hydrodynamic parameters, make remotely operated vehicles (ROVs) trajectory tracking control complex and difficult. To solve this problem, this paper proposes a fast sliding mode controller with a fixed-time disturban...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2024-03, Vol.14 (6), p.2533
Hauptverfasser: Zhou, Huadong, Mu, Xiangyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Time-varying nonlinear external disturbances, as well as uncertainties in model and hydrodynamic parameters, make remotely operated vehicles (ROVs) trajectory tracking control complex and difficult. To solve this problem, this paper proposes a fast sliding mode controller with a fixed-time disturbance observer (FSMC-FDO), which consists of a sliding mode controller based on a fast reaching law and a novel fixed-time disturbance observer. The FSMC can solve the contradiction between system response time and chatter amplitude in sliding mode control. The FDO can compensate for time-varying external disturbances. The Lyapunov theory is used to prove the stability of the entire control scheme. Simulation results show that FSMC-FDO exhibits a good trajectory tracking performance with a better robustness than the conventional sliding mode control (CSMC) on the basis of exponential reaching law (ERL), while significantly reducing chatter.
ISSN:2076-3417
2076-3417
DOI:10.3390/app14062533