Yield Assessment of Maize Varieties under Varied Water Application in Semi-Arid Conditions of Southern Mozambique
Maize is one of the most important staple food crops in Mozambique. Its production is country-wise dominated by smallholder farmers (more than 90%) under rain-fed conditions, where the risk of crop failure is high, especially under semi-arid conditions in southern Mozambique. Several maize genotypes...
Gespeichert in:
Veröffentlicht in: | Agronomy (Basel) 2021-12, Vol.11 (12), p.2541 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Maize is one of the most important staple food crops in Mozambique. Its production is country-wise dominated by smallholder farmers (more than 90%) under rain-fed conditions, where the risk of crop failure is high, especially under semi-arid conditions in southern Mozambique. Several maize genotypes have been developed for the broad agro-ecological zone adaptation but lack strong evidence about their productivity and yield stability to support decision-making in farming systems. In order to assess the yield and yield stability of maize genotypes under different environments, five identical on-station trials were implemented in the period 2017 to 2019, covering summer and winter seasons in the semi-arid region of southern Mozambique. The trials were established at the experimental station of the Universidade Eduardo Mondlane (UEM) in Sábie and at the Instituto de Investigação Agrária de Moçambique (IIAM) in Chókwe. A strip-plot design in a randomized complete block arrangement with 15 maize genotypes, and three water application (rainfall plus irrigation) levels in four replications was followed in a line-source irrigation arrangement. The water application levels varied from 151 mm to 804 mm, covering different water regimes. Under well-watered summer conditions, the genotypes G6 and G12 showed high yield and high grain yield stability. In the drier conditions, either in summer or winter, the G2 and G11 genotypes produced higher grain yield but with low stability. Both groups of genotypes have a high potential to be included in technology transfer packages to smallholder farmers to address food security or large-scale commercial farmers differently. |
---|---|
ISSN: | 2073-4395 2073-4395 |
DOI: | 10.3390/agronomy11122541 |