Fluid Inclusion, Isotopic, and Elemental Geochemistry Studies of Cave-Filling Calcite in the Lower–Middle Ordovician Yingshan Formation of Tahe Oilfield, NW China: Implication for Karstification in Non-exposed Limestone
Improving the recognition of paleo-fluid circulation history is of great significance to reconstruct pore evolution during carbonate diagenesis. Integrated petrography, fluid inclusion, isotopic and elemental geochemistry (laser ablation inductively coupled plasma mass spectrometry) studies, calcite...
Gespeichert in:
Veröffentlicht in: | Frontiers in earth science (Lausanne) 2022-03, Vol.10 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Improving the recognition of paleo-fluid circulation history is of great significance to reconstruct pore evolution during carbonate diagenesis. Integrated petrography, fluid inclusion, isotopic and elemental geochemistry (laser ablation inductively coupled plasma mass spectrometry) studies, calcites generated in paleocaves, and fractures were investigated. This study aims to reveal the paleo-fluid origin and karstification event within the nonexposed limestone of the Lower–Middle Ordovician Yingshan Formation in the Tarim Basin. The only generation of blocky calcite growing along the karst paleocave and fracture walls [cave-filling calcite (CFC)] crosscuts burial stylolites. The secondary fluid inclusions obtained from CFC are characterized by the coexistence of liquid-only and liquid-dominated aqueous inclusions with low salinities values (0–2.4 wt%), suggesting that the CFC has experienced a low-temperature environment ( |
---|---|
ISSN: | 2296-6463 2296-6463 |
DOI: | 10.3389/feart.2022.842386 |