The influence of stabilizing agents on physicochemical properties of selenium nanoparticles obtained by chemical reduction

Selenium nanoparticles (SeNPs) are specific form of this element that has recently become the subject of numerous research, especially in the field of biomedicine. Several synthesis procedures for obtaining SeNPs have been developed so far, among those including reduction of selenium salts are the m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tehnika (Beograd) 2021, Vol.76 (2), p.137-143
Hauptverfasser: Filipović, Nenad, Stojanović, Zoran, Stevanović, Magdalena
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selenium nanoparticles (SeNPs) are specific form of this element that has recently become the subject of numerous research, especially in the field of biomedicine. Several synthesis procedures for obtaining SeNPs have been developed so far, among those including reduction of selenium salts are the most frequently used. In this work, it is examined the effect of two stabilizing agents on morphology, size, and crystallinity of obtained SeNPs. For this purpose, bovine serum albumin (BSA) and polyglutamic acid (PGA) were used as stabilizing agents while reduction of sodium selenite with ascorbic acid was elected as a synthesis procedure. Based on the results obtained from scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), selected area electron diffraction (SAED), and measurements of zeta potential, it was determined that the mechanism of stabilization i.e. choice of stabilizing agent can promote different crystalline arrangement within SeNPs. The BSA proved as a more effective stabilizing agent for SeNPs, as it provides obtaining the smaller, more uniform, and amorphous nanoparticles.
ISSN:0040-2176
2560-3086
DOI:10.5937/tehnika2102137F