Research on Optimal Control Strategy for Unpowered Downslope of High-Voltage Inspection Robot Based on Motor Temperature Rise in Complexity Microgrid Networks

In order to avoid the motor damage caused by excessive temperature rise of armature winding of the walking motor during braking of high-voltage inspection robot in complexity microgrid networks, an unpowered downhill speed and energy recovery optimization control strategy is proposed based on temper...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Complexity (New York, N.Y.) N.Y.), 2021, Vol.2021 (1)
Hauptverfasser: Yang, Zhiyong, Fang, Qiao, Zhang, Zihao, Liu, Xing, Xu, Xianjin, Yan, Yu, Miao, Chen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In order to avoid the motor damage caused by excessive temperature rise of armature winding of the walking motor during braking of high-voltage inspection robot in complexity microgrid networks, an unpowered downhill speed and energy recovery optimization control strategy is proposed based on temperature rise characteristics of the walking motor. Firstly, the thermal equivalent circuit model of the walking motor is established, and the mapping relationship between the armature winding temperature of the walking motor and ambient temperature is solved; secondly, the influence of armature winding temperature on unpowered downhill speed and energy recovery control strategy of robot is analyzed; thirdly, according to the temperature of front and rear wheel walking motors and the temperature difference between them, the optimal control strategy of unpowered downhill speed and energy recovery of robot is put forward; fourthly, by adjusting the duty ratio u of the energy consumption speed control system and the front wheel feedback brake distribution factor λ, the temperature difference between the front and rear wheel walking motors is reduced. Through the experimental analysis on the simulated line, it is verified that the unpowered downhill speed and energy recovery optimization control method based on the temperature rise characteristics of the walking motor can effectively reduce the temperature difference between the front and rear wheels.
ISSN:1076-2787
1099-0526
DOI:10.1155/2021/6659941