On central-peripheral appendage numbers of uniform central graphs
In a uniform central graph (UCG) the set of eccentric vertices of a central vertex is the same for all central vertices. This collection of eccentric vertices is the centered periphery. For a pair of graphs (C,P) the central-peripheral appendage number, Aucg(C,P), is the minimum number vertices need...
Gespeichert in:
Veröffentlicht in: | Electronic journal of graph theory and applications 2020-01, Vol.8 (1), p.157-180 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In a uniform central graph (UCG) the set of eccentric vertices of a central vertex is the same for all central vertices. This collection of eccentric vertices is the centered periphery. For a pair of graphs (C,P) the central-peripheral appendage number, Aucg(C,P), is the minimum number vertices needed to be adjoined to the graphs C and P in order to construct a uniform central graph H with center V(C) and centered-periphery V(P). We compute Aucg(C,P) in terms of the radius and diameter of P and whether or not C is a complete graph. In the process we show Aucg(C, P) ≤ 6 if diam(P) > 2. We also provide structure theorems for UCGs in terms of the centered periphery. |
---|---|
ISSN: | 2338-2287 2338-2287 |
DOI: | 10.5614/ejgta.2020.8.1.12 |