Abstract of: Calculation methods of glass parapets in aluminium clamping profiles

This study aims to investigate and assess the analytical calculation methods which are applicable to glass parapets. Specifically it is focused on glass parapets, which are continuously clamped along their lower edge in an aluminium profile, without the addition of a (structural) handrail. The start...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Challenging glass conference proceedings 2018-05, Vol.6 (1)
Hauptverfasser: Youri Baidjoe, Bert Van Lancker, Jan Belis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims to investigate and assess the analytical calculation methods which are applicable to glass parapets. Specifically it is focused on glass parapets, which are continuously clamped along their lower edge in an aluminium profile, without the addition of a (structural) handrail. The starting point of the research are the current codes of practice regarding glass parapets. The objectives are to investigate the limitations of the current methods, to develop new methods and to test whether these are applicable, taking into account the standards of several European countries. Codes and standards from the Netherlands, Belgium, the United Kingdom and Germany are analysed and applied to the calculation methods, to identify and analyse the differences. Subsequently, a series of static load tests have been performed to determine the spring stiffness of the aluminium parapet clamping profiles, such that they can be applied in new analytical calculation methods. The long-term value of this research is to present more accurate calculation methods which can be applied to continuously supported glass parapet, accounting for different parameters, such as the supporting effect of sealing rubbers and the application depth of fixation wedges. Finally, recommendations are made to improve common calculation methods.
ISSN:2589-8019
DOI:10.7480/cgc.6.2383