Small-Scale Bioreactor for Sterile Hydroponics and Hairy Roots: Metabolic Diversity and Salicylic Acid Exudation by Hairy Roots of Hyoscyamus niger

The volume and complexity of commercial bioreactors for sterile hydroponics and hairy roots are too large for comparative analysis of many cultures. Here a small-scale bioreactor fabricated from standard glass materials and suitable for both airlift and bubble aeration mode is described. The perform...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2019, Vol.9 (15), p.3044
Hauptverfasser: Kareem, Zana Jamal, Su, Ling, Rathgeb, Anna, Sirrenberg, Anke, Hadacek, Franz, Rashid, Ahmad Hama Ameen H., Karlovsky, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The volume and complexity of commercial bioreactors for sterile hydroponics and hairy roots are too large for comparative analysis of many cultures. Here a small-scale bioreactor fabricated from standard glass materials and suitable for both airlift and bubble aeration mode is described. The performance of the bioreactor was tested by growing oilseed rape (Brassica napus L.) and rose plants (Rosa canina L.) in sterile hydroponics and by cultivating hairy roots of henbane (Hyoscyamus niger L.) and sesame (Hyoscyamus niger L.). Plants grown in hydroponics for up to six weeks did not show chloroses or necroses. Hairy roots grew faster or comparably fast in bioreactors as compared to shaking flasks. Root exudates of roses and exudates of hairy roots of henbane were subjected to targeted and nontargeted analysis by HPLC coupled with optical and mass spectrometric detectors. The diversity and concentration of hairy root exudates were higher in bioreactors than in shaking flasks. The composition of hairy root exudates of three accessions of H. niger did not match the genetic relatedness among the accessions. Hairy roots of Hyoscyamus niger exuded salicylic acid in amounts varying among plant accessions and between bioreactors and shaking flask cultures.
ISSN:2076-3417
2076-3417
DOI:10.3390/app9153044