Speech Emotion Recognition Incorporating Relative Difficulty and Labeling Reliability

Emotions in speech are expressed in various ways, and the speech emotion recognition (SER) model may perform poorly on unseen corpora that contain different emotional factors from those expressed in training databases. To construct an SER model robust to unseen corpora, regularization approaches or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2024-06, Vol.24 (13), p.4111
Hauptverfasser: Ahn, Youngdo, Han, Sangwook, Lee, Seonggyu, Shin, Jong Won
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Emotions in speech are expressed in various ways, and the speech emotion recognition (SER) model may perform poorly on unseen corpora that contain different emotional factors from those expressed in training databases. To construct an SER model robust to unseen corpora, regularization approaches or metric losses have been studied. In this paper, we propose an SER method that incorporates relative difficulty and labeling reliability of each training sample. Inspired by the Proxy-Anchor loss, we propose a novel loss function which gives higher gradients to the samples for which the emotion labels are more difficult to estimate among those in the given minibatch. Since the annotators may label the emotion based on the emotional expression which resides in the conversational context or other modality but is not apparent in the given speech utterance, some of the emotional labels may not be reliable and these unreliable labels may affect the proposed loss function more severely. In this regard, we propose to apply label smoothing for the samples misclassified by a pre-trained SER model. Experimental results showed that the performance of the SER on unseen corpora was improved by adopting the proposed loss function with label smoothing on the misclassified data.
ISSN:1424-8220
1424-8220
DOI:10.3390/s24134111