mTORC1 signaling pathway integrates estrogen and growth factor to coordinate vaginal epithelial cells proliferation and differentiation
The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen. Estrogen acts as an activator of mTOR signaling but its role in vaginal epithelial homeostasis is unknown. We analyzed reproductive tract-specific Rptor or Rictor conditional knockout mic...
Gespeichert in:
Veröffentlicht in: | Cell death & disease 2022-10, Vol.13 (10), p.862-862, Article 862 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The mouse vaginal epithelium cyclically exhibits cell proliferation and differentiation in response to estrogen. Estrogen acts as an activator of mTOR signaling but its role in vaginal epithelial homeostasis is unknown. We analyzed reproductive tract-specific
Rptor
or
Rictor
conditional knockout mice to reveal the role of mTOR signaling in estrogen-dependent vaginal epithelial cell proliferation and differentiation. Loss of
Rptor
but not
Rictor
in the vagina resulted in an aberrant proliferation of epithelial cells and failure of keratinized differentiation. As gene expression analysis indicated, several estrogen-mediated genes, including
Pgr
and
Ereg
(EGF-like growth factor) were not induced by estrogen in
Rptor
cKO mouse vagina. Moreover, supplementation of EREG could activate the proliferation and survival of vaginal epithelial cells through YAP1 in the absence of
Rptor
. Thus, mTORC1 signaling integrates estrogen and growth factor signaling to mediate vaginal epithelial cell proliferation and differentiation, providing new insights into vaginal atrophy treatment for post-menopausal women. |
---|---|
ISSN: | 2041-4889 2041-4889 |
DOI: | 10.1038/s41419-022-05293-8 |