On unit group of finite semisimple group algebras of non-metabelian groups up to order 72

We characterize the unit group of semisimple group algebras $\mathbb{F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematica Bohemica 2021-12, Vol.146 (4), p.429-455
Hauptverfasser: Mittal, Gaurav, Sharma, Rajendra Kumar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We characterize the unit group of semisimple group algebras $\mathbb{F}_qG$ of some non-metabelian groups, where $F_q$ is a field with $q=p^k$ elements for $p$ prime and a positive integer $k$. In particular, we consider all 6 non-metabelian groups of order 48, the only non-metabelian group $((C_3\times C_3)\rtimes C_3)\rtimes C_2$ of order 54, and 7 non-metabelian groups of order 72. This completes the study of unit groups of semisimple group algebras for groups upto order 72.
ISSN:0862-7959
2464-7136
DOI:10.21136/MB.2021.0116-19