Magnetic Design of a 3-Phase SiC-Based PV Inverter With DC-Link Referenced Output Filter
The use of Silicon carbide (SiC) devices represents an improvement in terms of size, weight and efficiency of power converters. However, SiC-based solutions present high dv/dt and di/dt on the switching events, increasing the common-mode noise injected into the grid. To reduce the common-mode noise,...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023, Vol.11, p.25531-25542 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of Silicon carbide (SiC) devices represents an improvement in terms of size, weight and efficiency of power converters. However, SiC-based solutions present high dv/dt and di/dt on the switching events, increasing the common-mode noise injected into the grid. To reduce the common-mode noise, three-phase inverters with a DC-link referenced output filter are widely considered in photovoltaic (PV) inverters connected to the grid. However, if the filter is DC-link referenced the inductor ripple is larger, and this must be considered for the AC inductor filter design. This work shows, on a PV inverter, the impact of that DC-link referenced filter on the current ripple of the inductor, and the improvement achieved with the use of SiC devices, increasing the switching frequency. A comparison in terms of weight, size, losses and materials costs is presented for different core materials and configurations. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2023.3254887 |