Optimal transport for variational data assimilation

Usually data assimilation methods evaluate observation-model misfits using weighted L2 distances. However, it is not well suited when observed features are present in the model with position error. In this context, the Wasserstein distance stemming from optimal transport theory is more relevant.This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear processes in geophysics 2018-01, Vol.25 (1), p.55-66
Hauptverfasser: Feyeux, Nelson, Vidard, Arthur, Nodet, Maëlle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Usually data assimilation methods evaluate observation-model misfits using weighted L2 distances. However, it is not well suited when observed features are present in the model with position error. In this context, the Wasserstein distance stemming from optimal transport theory is more relevant.This paper proposes the adaptation of variational data assimilation for the use of such a measure. It provides a short introduction of optimal transport theory and discusses the importance of a proper choice of scalar product to compute the cost function gradient. It also extends the discussion to the way the descent is performed within the minimization process.These algorithmic changes are tested on a nonlinear shallow-water model, leading to the conclusion that optimal transport-based data assimilation seems to be promising to capture position errors in the model trajectory.
ISSN:1607-7946
1023-5809
1607-7946
DOI:10.5194/npg-25-55-2018