Sparfloxacin-Metal Complexes as Urease Inhibitors: Their Synthesis, Characterization, Antimicrobial, and Antienzymatic Evaluation

Four new metal complexes (S12–S15) of SPFX (third-generation quinolones) via heavy metals have been synthesized in good yield and characterized by physicochemical and spectroscopic methods including TLC, IR, NMR, and elemental analyses. Sparfloxacinato ligand binds with metals through pyridone and o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemistry 2013-01, Vol.2013 (1)
Hauptverfasser: Gul, Somia, Sultana, Najma, Arayne, M. Saeed, Shamim, Sana, Akhtar, Mahwish, Khan, Ajmal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four new metal complexes (S12–S15) of SPFX (third-generation quinolones) via heavy metals have been synthesized in good yield and characterized by physicochemical and spectroscopic methods including TLC, IR, NMR, and elemental analyses. Sparfloxacinato ligand binds with metals through pyridone and oxygen atom of carboxylic group. The biological actives of complexes have been tested against four Gram-positive and seven Gram-negative bacteria and six different fungi. Statistical analysis of antimicrobial data was done by one-way ANOVA, Dunnett’s test; it was observed that S13, S14, and S15 were found to be most active complexes. Antifungal data confirm that all four synthesized complexes are most active and show significant activity against F. solani with respect to parent drug and none of complexes show activity against A. parasiticus, A. effuris, and S. cervicis. To study inhibitory effects of newly formed complexes, enzyme inhibition studies have been conducted against urease, α-chymotrypsin, and carbonic anhydrase. Enzymatic activity results of these complexes indicated them to be good inhibitors of urease enzyme while all complexes show mild activities against carbonic anhydrase enzyme. Further research may prove the promising role of these synthesized complexes as urease inhibitors.
ISSN:2090-9063
2090-9071
DOI:10.1155/2013/306385