Identification and Functional Validation of Two Novel Antioxidant Peptides in Saffron

Saffron ( L.) is one of the most expensive spices in the world, boasting rich medicinal and edible value. However, the effective development of active natural substances in saffron is still limited. Currently, there is a lack of comprehensive studies on the saffron stigma protein, and the main effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antioxidants 2024-03, Vol.13 (3), p.378
Hauptverfasser: Long, Yiyang, Tao, Han, Wang, Shiyu, Xing, Bingcong, Wang, Zhineng, Liu, Kexin, Shao, Qingsong, Gao, Fei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Saffron ( L.) is one of the most expensive spices in the world, boasting rich medicinal and edible value. However, the effective development of active natural substances in saffron is still limited. Currently, there is a lack of comprehensive studies on the saffron stigma protein, and the main effect peptides have not been identified. In this study, the total protein composition of saffron stigmas was analyzed, and two main antioxidant peptides (DGGSDYLGK and VDPYFNK) were identified, which showed high antioxidant activity. Then, the stability of two peptides was further evaluated. Furthermore, our results suggested that these two peptides may protect HepG2 cells from H O -induced oxidative damage by significantly improving the activity of endogenous antioxidant enzymes and reducing the malondialdehyde (MDA) content. Collectively, we identified two peptides screened from the saffron protein possessing good antioxidant activity and stability, making them promising candidates for use as functional foods, etc., for health promotion. Our findings indicated that proteomic analysis together with peptide identification is a good method for exploitation and utilization of spice plants.
ISSN:2076-3921
2076-3921
DOI:10.3390/antiox13030378