AI Approaches Towards Prechtl's Assessment of General Movements: A Systematic Literature Review
General movements (GMs) are spontaneous movements of infants up to five months post-term involving the whole body varying in sequence, speed, and amplitude. The assessment of GMs has shown its importance for identifying infants at risk for neuromotor deficits, especially for the detection of cerebra...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2020-09, Vol.20 (18), p.5321 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | General movements (GMs) are spontaneous movements of infants up to five months post-term involving the whole body varying in sequence, speed, and amplitude. The assessment of GMs has shown its importance for identifying infants at risk for neuromotor deficits, especially for the detection of cerebral palsy. As the assessment is based on videos of the infant that are rated by trained professionals, the method is time-consuming and expensive. Therefore, approaches based on Artificial Intelligence have gained significantly increased attention in the last years. In this article, we systematically analyze and discuss the main design features of all existing technological approaches seeking to transfer the Prechtl's assessment of general movements from an individual visual perception to computer-based analysis. After identifying their shared shortcomings, we explain the methodological reasons for their limited practical performance and classification rates. As a conclusion of our literature study, we conceptually propose a methodological solution to the defined problem based on the groundbreaking innovation in the area of Deep Learning. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s20185321 |