Mutational and transcriptional analyses of an avian pathogenic Escherichia coli ColV plasmid

Previously we described a 184-kb ColV plasmid, pAPEC-O2-ColV, that contributed to the ability of an E. coli to kill avian embryos, grow in human urine, and colonize the murine kidney. Here, the roles of several genes encoded by this plasmid in virulence were assessed using mutational and transcripti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BMC microbiology 2008-01, Vol.8 (1), p.24-24, Article 24
Hauptverfasser: Skyberg, Jerod A, Johnson, Timothy J, Nolan, Lisa K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previously we described a 184-kb ColV plasmid, pAPEC-O2-ColV, that contributed to the ability of an E. coli to kill avian embryos, grow in human urine, and colonize the murine kidney. Here, the roles of several genes encoded by this plasmid in virulence were assessed using mutational and transcriptional analyses. Genes chosen for deletion were iss, tsh, iutA, iroN, sitA, and cvaB. In addition, a 35-kb region of the plasmid, containing iss, tsh, and the ColV and iro operons, along with a 15-kb region containing both the aerobactin and sit operons, were deleted. Mutants were compared to the wild-type (APEC O2) for lethality to chick embryos and growth in human urine. Expression of the targeted genes was also assessed under these same conditions using RT-PCR RESULTS: No significant differences between the mutants and the wild-type in these phenotypic traits were detected. However, genes encoding known or predicted iron transport systems were up-regulated during growth in human urine, as compared to growth in LB broth, while iss, hlyF, and iroN were strongly up-regulated in chick embryos. While no difference was observed between the mutant strains and their wild-type parent in the phenotypic traits assayed, we reasoned that some compensatory virulence mechanism, insensitivity of the virulence assays, or other factor could have obscured changes in the virulence of the mutants. Indeed we found several of these genes to be up-regulated in human urine and/or in the chick embryo, suggesting that certain genes linked to ColV plasmids are involved in the establishment of avian extraintestinal infection.
ISSN:1471-2180
1471-2180
DOI:10.1186/1471-2180-8-24