Assessment of Compaction, Temperature, and Duration Factors for Packaging and Transporting of Sterile Male Aedes aegypti (Diptera: Culicidae) under Laboratory Conditions

Optimized conditions for the packaging and transportation of sterile males are crucial factors in successful SIT programs against mosquito vector-borne diseases. The factors influencing the quality of sterile males in packages during transportation need to be assessed to develop standard protocols....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insects (Basel, Switzerland) Switzerland), 2022-09, Vol.13 (9), p.847
Hauptverfasser: Ernawan, Beni, Anggraeni, Tjandra, Yusmalinar, Sri, Sasmita, Hadian Iman, Fitrianto, Nur, Ahmad, Intan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Optimized conditions for the packaging and transportation of sterile males are crucial factors in successful SIT programs against mosquito vector-borne diseases. The factors influencing the quality of sterile males in packages during transportation need to be assessed to develop standard protocols. This study was aimed to investigate the impact of compaction, temperature, and duration factors during packaging and transportation on the quality of gamma-sterilized male Ae. aegypti. Aedes aegypti males were sterilized at a dose of 70 Gy, compacted into Falcon tubes with densities of 40, 80, and 120 males/2 mL; and then exposed to temperatures of 7, 14, 21, and 28 °C. Each temperature setup was held for a duration of 3, 6, 12, 24, and 48 h at a 60 rpm constant vibration to simulate transportation. The parameters of mortality, flight ability, induced sterility, and longevity were investigated. Results showed that increases in density, temperature, and duration significantly increased mortality and reduced flight ability and longevity, but none of the factors significantly affected induced sterility. With a mortality rate of less than 20%, an escaping rate of more than 70%, considerable longevity, and the most negligible effect on induced sterility (approximately 98%), a temperature of 7 °C and a compaction density of 80 males/2 mL were shown to be optimized conditions for short-term transportation (no more than 24 h) with the minimum adverse effects compared with other condition setups.
ISSN:2075-4450
2075-4450
DOI:10.3390/insects13090847