An improved criterion for new particle formation in diverse atmospheric environments

A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter LΓ, characterizin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric chemistry and physics 2010-09, Vol.10 (17), p.8469-8480
Hauptverfasser: Kuang, C., Riipinen, I., Sihto, S.-L., Kulmala, M., McCormick, A. V., McMurry, P. H.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A dimensionless theory for new particle formation (NPF) was developed, using an aerosol population balance model incorporating recent developments in nucleation rates and measured particle growth rates. Based on this theoretical analysis, it was shown that a dimensionless parameter LΓ, characterizing the ratio of the particle scavenging loss rate to the particle growth rate, exclusively determined whether or not NPF would occur on a particular day. This parameter determines the probability that a nucleated particle will grow to a detectable size before being lost by coagulation with the pre-existing aerosol. Cluster-cluster coagulation was shown to contribute negligibly to this survival probability under conditions pertinent to the atmosphere. Data acquired during intensive measurement campaigns in Tecamac (MILAGRO), Atlanta (ANARChE), Boulder, and Hyytiälä (QUEST II, QUEST IV, and EUCAARI) were used to test the validity of LΓ as an NPF criterion. Measurements included aerosol size distributions down to 3 nm and gas-phase sulfuric acid concentrations. The model was applied to seventy-seven NPF events and nineteen non-events (characterized by growth of pre-existing aerosol without NPF) measured in diverse environments with broad ranges in sulfuric acid concentrations, ultrafine number concentrations, aerosol surface areas, and particle growth rates (nearly two orders of magnitude). Across this diverse data set, a nominal value of LΓ=0.7 was found to determine the boundary for the occurrence of NPF, with NPF occurring when LΓ0.7. Moreover, nearly 45% of measured LΓ values associated with NPF fell in the relatively narrow range of 0.1
ISSN:1680-7324
1680-7316
1680-7324
DOI:10.5194/acp-10-8469-2010