Characterization of Microplastics and Mesoplastics and Presence of Biofilms, Collected in the Gualí Wetland Cundinamarca, Colombia
Wetlands are being contaminated by housing developments, effluents, industrial areas, and poor sanitation, resulting in the presence of plastic polymers and the development of biofilms on these materials, which represent an elevated risk to freshwater fauna and flora. The objective of this study was...
Gespeichert in:
Veröffentlicht in: | Microplastics 2023-08, Vol.2 (3), p.255-267 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Wetlands are being contaminated by housing developments, effluents, industrial areas, and poor sanitation, resulting in the presence of plastic polymers and the development of biofilms on these materials, which represent an elevated risk to freshwater fauna and flora. The objective of this study was to characterize mesoplastics and microplastics, collected in the Gualí Wetland, Colombia, as well as to verify the presence of biofilms on such polymers. Nine water samples (36 L per sample) were evaluated at three points of the wetland; the size of the particles was determined by image analysis, the type of polymer through FTIR, and the presence of biofilms by microscopy. A total of 79 items/0.135 m3 were collected, 2 macroplastic items, 53 mesoplastic items, and 24 microplastic items. The presence of fragments (70%) and pellets (41%), with transparent (40%) and white (30%) being the predominant ones, was outstanding. Among the polymers, high-density polyethylene (HDPE) dominated, followed by expanded polystyrene. The results of SEM demonstrated the presence of diatoms on the surface of the plastic polymers. Furthermore, the results showed a greater amount of HDPE mesoplastics and microplastics in the shape of fragments and pellets. In addition, the presence of biofilms on these plastic particles can increase the adsorption of contaminants, negatively affecting this ecosystem. The outcome of this study can be used to identify bacteria that reside in biofilms associated with microplastics and mesoplastics. |
---|---|
ISSN: | 2673-8929 2673-8929 |
DOI: | 10.3390/microplastics2030021 |