MINDED-FBA: An Automatic Remote Sensing Tool for the Estimation of Flooded and Burned Areas
This paper presents the MINDED-FBA, a remote-sensing-based tool for the determination of both flooded and burned areas. The tool, freely distributed as a QGIS plugin, consists of an adaptation and development of the previously published Multi Index Image Differencing methods (MINDED and MINDED-BA)....
Gespeichert in:
Veröffentlicht in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-02, Vol.15 (3), p.724 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the MINDED-FBA, a remote-sensing-based tool for the determination of both flooded and burned areas. The tool, freely distributed as a QGIS plugin, consists of an adaptation and development of the previously published Multi Index Image Differencing methods (MINDED and MINDED-BA). The MINDED-FBA allows the integration and combination of a wider diversity of satellite sensor datasets, now including the synthetic aperture radar (SAR), in addition to optical multispectral data. The performance of the tool is evaluated for six case studies located in Portugal, Australia, Pakistan, Italy, and the USA. The case studies were chosen for representing a wide range of conditions, such as type of hazardous event (i.e., flooding or fire), scale of application (i.e., local or regional), site specificities (e.g., climatic conditions, morphology), and available satellite data (optical multispectral and SAR). The results are compared in respect to reference delineation datasets (mostly from the Copernicus EMS). The application of the MINDED-FBA tool with SAR data is particularly effective to delineate flooding, while optical multispectral data resulted in the best performances for burned areas. Nonetheless, the combination of both types of remote sensing data (data fusion approach) also provides high correlations with the available reference datasets. The MINDED-FBA tool could represent a new near-real-time solution, capable of supporting emergency response measures. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15030724 |