Deep Learning in Cell Image Analysis
Cell images, which have been widely used in biomedical research and drug discovery, contain a great deal of valuable information that encodes how cells respond to external stimuli and intentional perturbations. Meanwhile, to discover rarer phenotypes, cell imaging is frequently performed in a high-c...
Gespeichert in:
Veröffentlicht in: | Intelligent computing 2022-01, Vol.2022 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cell images, which have been widely used in biomedical research and drug discovery, contain a great deal of valuable information that encodes how cells respond to external stimuli and intentional perturbations. Meanwhile, to discover rarer phenotypes, cell imaging is frequently performed in a high-content manner. Consequently, the manual interpretation of cell images becomes extremely inefficient. Fortunately, with the advancement of deep-learning technologies, an increasing number of deep learning-based algorithms have been developed to automate and streamline this process. In this study, we present an in-depth survey of the three most critical tasks in cell image analysis: segmentation, tracking, and classification. Despite the impressive score, the challenge still remains: most of the algorithms only verify the performance in their customized settings, causing a performance gap between academic research and practical application. Thus, we also review more advanced machine learning technologies, aiming to make deep learning-based methods more useful and eventually promote the application of deep-learning algorithms. |
---|---|
ISSN: | 2771-5892 2771-5892 |
DOI: | 10.34133/2022/9861263 |