Bivariant Chern classes for morphisms with nonsingular target varieties
W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class—a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of emb...
Gespeichert in:
Veröffentlicht in: | Central European journal of mathematics 2005-12, Vol.3 (4), p.614-626 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class—a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory
$$\tilde {\mathbb{F}}$$
of constructible functions and a unique bivariant Chern class γ:
$$\tilde {\mathbb{F}} \to {\mathbb{H}}$$
. |
---|---|
ISSN: | 1895-1074 2391-5455 1644-3616 |
DOI: | 10.2478/BF02475622 |