Bivariant Chern classes for morphisms with nonsingular target varieties

W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class—a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of emb...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Central European journal of mathematics 2005-12, Vol.3 (4), p.614-626
1. Verfasser: Yokura, Shoji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:W. Fulton and R. MacPherson posed the problem of unique existence of a bivariant Chern class—a Grothendieck transformation from the bivariant theory F of constructible functions to the bivariant homology theory H. J.-P. Brasselet proved the existence of a bivariant Chern class in the category of embeddable analytic varieties with cellular morphisms. In general however, the problem of uniqueness is still unresolved. In this paper we show that for morphisms having nonsingular target varieties there exists another bivariant theory $$\tilde {\mathbb{F}}$$ of constructible functions and a unique bivariant Chern class γ: $$\tilde {\mathbb{F}} \to {\mathbb{H}}$$ .
ISSN:1895-1074
2391-5455
1644-3616
DOI:10.2478/BF02475622