General Semiparametric Shared Frailty Model: Estimation and Simulation with frailtySurv

The R package for simulating and fitting semi-parametric shared frailty models is introduced. Package implements semi-parametric consistent estimators for a variety of frailty distributions, including gamma, log-normal, inverse Gaussian and power variance function, and provides consistent estimators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical software 2018, Vol.86 (4), p.1-42
Hauptverfasser: Monaco, John V, Gorfine, Malka, Hsu, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The R package for simulating and fitting semi-parametric shared frailty models is introduced. Package implements semi-parametric consistent estimators for a variety of frailty distributions, including gamma, log-normal, inverse Gaussian and power variance function, and provides consistent estimators of the standard errors of the parameters' estimators. The parameters' estimators are asymptotically normally distributed, and therefore statistical inference based on the results of this package, such as hypothesis testing and confidence intervals, can be performed using the normal distribution. Extensive simulations demonstrate the flexibility and correct implementation of the estimator. Two case studies performed with publicly available datasets demonstrate applicability of the package. In the Diabetic Retinopathy Study, the onset of blindness is clustered by patient, and in a large hard drive failure dataset, failure times are thought to be clustered by the hard drive manufacturer and model.
ISSN:1548-7660
1548-7660
DOI:10.18637/jss.v086.i04