Physical and numerical modelling of soil-atmosphere-structure interaction

Extreme, extended wet and dry seasons increase the adverse effects that soil wetting and drying cycles have on the response of shallow geotechnical structures. In expansive soils, volumetric changes due to water content variations may result in the incompatibility of deformations at the soil-structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:E3S web of conferences 2023-01, Vol.382, p.6002
Hauptverfasser: Granados, Jaime, Caicedo, Bernardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Extreme, extended wet and dry seasons increase the adverse effects that soil wetting and drying cycles have on the response of shallow geotechnical structures. In expansive soils, volumetric changes due to water content variations may result in the incompatibility of deformations at the soil-structure interface. This study proposes a physical approach and a numerical model to address the soil-atmosphere-structure interactions during soil saturation and desiccation. Experimental desiccation tests were performed on relatively thin, compacted kaolin clay samples that represent the soil-atmosphere boundary. A climatic chamber was used to impose atmospheric conditions of air relative humidity, temperature, wind velocity, and irradiance on the soil surface. Empirical mathematical expressions were obtained to estimate soil desiccation rates as a function of basic atmospheric parameters and soil properties. The experimental desiccation approach was complemented with a coupled thermo-hydro-mechanical (THM) numerical model for unsaturated soils. The coupled THM model calculates water and thermal fluxes, soil volumetric changes, vertical stresses, and the compatibility of soil-structure movements during swelling and shrinking. An example of the capabilities of the numerical model is presented for a full-scale geotechnical problem.
ISSN:2267-1242
2555-0403
2267-1242
DOI:10.1051/e3sconf/202338206002