Mechanistic insight into carbon-carbon bond formation on cobalt under simulated Fischer-Tropsch synthesis conditions

Facile C-C bond formation is essential to the formation of long hydrocarbon chains in Fischer-Tropsch synthesis. Various chain growth mechanisms have been proposed previously, but spectroscopic identification of surface intermediates involved in C-C bond formation is scarce. We here show that the hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2020-02, Vol.11 (1), p.750-750, Article 750
Hauptverfasser: Weststrate, C. J. (Kees-Jan), Sharma, Devyani, Garcia Rodriguez, Daniel, Gleeson, Michael A., Fredriksson, Hans O. A., Niemantsverdriet, J. W. (Hans)
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Facile C-C bond formation is essential to the formation of long hydrocarbon chains in Fischer-Tropsch synthesis. Various chain growth mechanisms have been proposed previously, but spectroscopic identification of surface intermediates involved in C-C bond formation is scarce. We here show that the high CO coverage typical of Fischer-Tropsch synthesis affects the reaction pathways of C 2 H x adsorbates on a Co(0001) model catalyst and promote C-C bond formation. In-situ high resolution x-ray photoelectron spectroscopy shows that a high CO coverage promotes transformation of C 2 H x adsorbates into the ethylidyne form, which subsequently dimerizes to 2-butyne. The observed reaction sequence provides a mechanistic explanation for CO-induced ethylene dimerization on supported cobalt catalysts. For Fischer-Tropsch synthesis we propose that C-C bond formation on the close-packed terraces of a cobalt nanoparticle occurs via methylidyne (CH) insertion into long chain alkylidyne intermediates, the latter being stabilized by the high surface coverage under reaction conditions. The mechanism by which C-C bonds form during Fischer-Tropsch synthesis remains debated while spectroscopic identification of reaction intermediates remains scarce. Here, the authors identify alkylidynes as reactive intermediates for C-C bond formation on cobalt terrace sites and moreover show that these intermediates are stabilized by the high surface coverage typical for Fischer-Tropsch synthesis.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-020-14613-5