Human Cytomegalovirus Latency and Reactivation in Allogeneic Hematopoietic Stem Cell Transplant Recipients
Human cytomegalovirus (HCMV) reactivation is a major infectious cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). HCMV is a ubiquitous beta-herpesvirus which asymptomatically infects immunocompetent individuals but establishes lifelong latency, with th...
Gespeichert in:
Veröffentlicht in: | Frontiers in microbiology 2019-05, Vol.10, p.1186-1186 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Human cytomegalovirus (HCMV) reactivation is a major infectious cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). HCMV is a ubiquitous beta-herpesvirus which asymptomatically infects immunocompetent individuals but establishes lifelong latency, with the potential to reactivate to a life-threatening productive infection when the host immune system is suppressed or compromised. Opportunistic HCMV reactivation is the most common viral complication following engraftment after HSCT and is associated with a marked increase in non-relapse mortality, which appears to be linked to complex effects on post-transplant immune recovery. This minireview explores the cellular sites of HCMV latency and reactivation in HSCT recipients and provides an overview of the risk factors for HCMV reactivation post-HSCT. The impact of HCMV in shaping post-transplant immune reconstitution and its relationship with patient outcomes such as relapse and graft-versus-host disease will be discussed. Finally, we survey current and emerging strategies to prevent and control HCMV reactivation in HSCT recipients, with recent developments including adoptive T cell therapies to accelerate HCMV-specific T cell reconstitution and new anti-HCMV drug therapy for HCMV reactivation after HSCT. |
---|---|
ISSN: | 1664-302X 1664-302X |
DOI: | 10.3389/fmicb.2019.01186 |