The Influence of Current Magnitudes and Profiles on the Sedimentation of Magnetorheological Fluids: An Experimental Work

Magnetorheological fluids (MRFs) are widely used for various kinds of controllable devices since their properties can be controlled by an external magnetic field. Despite many benefits of MRFs, such as fast response time, the sedimentation arisen due to the density mismatch of the compositions betwe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magnetochemistry 2024-03, Vol.10 (3), p.18
Hauptverfasser: Maharani, Elliza Tri, Seo, Myeong-Won, Sohn, Jung Woo, Oh, Jong-Seok, Choi, Seung-Bok
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Magnetorheological fluids (MRFs) are widely used for various kinds of controllable devices since their properties can be controlled by an external magnetic field. Despite many benefits of MRFs, such as fast response time, the sedimentation arisen due to the density mismatch of the compositions between iron particles and carrier oil is still one of bottlenecks to be resolved. Many studies on the sedimentation problem of MR fluids have been carried out considering appropriate additives, nanoparticles, and several carrier oils with different densities. However, a study on the effect of current magnitudes and profiles on the sedimentation is considerably rare. Therefore, this study experimentally investigates sedimentation behaviors due to different current magnitudes and different magnitude profiles such as square and sine waves in different diameters. The evaluation was performed by visual observation to obtain the sedimentation rate. It was found that the average sedimentation rate of the square type of current is slower compared to the sinusoidal type. It has also been identified that the higher intensity of the applied current results in a stronger electromagnetic field, which could slow down the sedimentation. The results achieved in this work can be effectively used to reduce particle sedimentation in the controller design of various application systems utilizing MRFs in which the controller generates a different magnitude and different profile of the external magnetic field.
ISSN:2312-7481
2312-7481
DOI:10.3390/magnetochemistry10030018