Artificial Intelligence and 3D Scanning Laser Combination for Supervision and Fault Diagnostics
In this work, we combine some of the most relevant artificial intelligence (AI) techniques with a range-resolved interferometry (RRI) instrument applied to the maintenance of a wind turbine. This method of automatic and autonomous learning can identify, monitor, and detect the electrical and mechani...
Gespeichert in:
Veröffentlicht in: | Sensors (Basel, Switzerland) Switzerland), 2022-10, Vol.22 (19), p.7649 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we combine some of the most relevant artificial intelligence (AI) techniques with a range-resolved interferometry (RRI) instrument applied to the maintenance of a wind turbine. This method of automatic and autonomous learning can identify, monitor, and detect the electrical and mechanical components of wind turbines to predict, detect, and anticipate their degeneration. A scanner laser is used to detect vibrations in two different failure states. Following each working cycle, RRI in-process measurements agree with in-process hand measurements of on-machine micrometers, as well as laser scanning in-process measurements. As a result, the proposed method should be very useful for supervising and diagnosing wind turbine faults in harsh environments. In addition, it will be able to perform in-process measurements at low costs. |
---|---|
ISSN: | 1424-8220 1424-8220 |
DOI: | 10.3390/s22197649 |