Artificial Intelligence and 3D Scanning Laser Combination for Supervision and Fault Diagnostics

In this work, we combine some of the most relevant artificial intelligence (AI) techniques with a range-resolved interferometry (RRI) instrument applied to the maintenance of a wind turbine. This method of automatic and autonomous learning can identify, monitor, and detect the electrical and mechani...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors (Basel, Switzerland) Switzerland), 2022-10, Vol.22 (19), p.7649
Hauptverfasser: Vives, Javier, Palací, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we combine some of the most relevant artificial intelligence (AI) techniques with a range-resolved interferometry (RRI) instrument applied to the maintenance of a wind turbine. This method of automatic and autonomous learning can identify, monitor, and detect the electrical and mechanical components of wind turbines to predict, detect, and anticipate their degeneration. A scanner laser is used to detect vibrations in two different failure states. Following each working cycle, RRI in-process measurements agree with in-process hand measurements of on-machine micrometers, as well as laser scanning in-process measurements. As a result, the proposed method should be very useful for supervising and diagnosing wind turbine faults in harsh environments. In addition, it will be able to perform in-process measurements at low costs.
ISSN:1424-8220
1424-8220
DOI:10.3390/s22197649