Enhancing the Mechanical Properties of Injectable Nanocomposite Hydrogels by Adding Boronic Acid/Boronate Ester Dynamic Bonds at the Nanoparticle-Polymer Interface

Incorporating nanoparticles into injectable hydrogels is a well-known technique for improving the mechanical properties of these materials. However, significant differences in the mechanical properties of the polymer matrix and the nanoparticles can result in localized stress concentrations at the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gels 2024-10, Vol.10 (10), p.638
Hauptverfasser: Sánchez, Jesús, Ulloa, Jose, Oyarzún, Yessenia, Ceballos, Matías, Ruiz, Carla, Boury, Bruno, Urbano, Bruno F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Incorporating nanoparticles into injectable hydrogels is a well-known technique for improving the mechanical properties of these materials. However, significant differences in the mechanical properties of the polymer matrix and the nanoparticles can result in localized stress concentrations at the polymer-nanoparticle interface. This situation can lead to problems such as particle-matrix debonding, void formation, and material failure. This work introduces boronic acid/boronate ester dynamic covalent bonds (DCBs) as energy dissipation sites to mitigate stress concentrations at the polymer-nanoparticle interface. Once boronic acid groups were immobilized on the surface of SiO nanoparticles (SiO -BA) and incorporated into an alginate matrix, the nanocomposite hydrogels exhibited enhanced viscoelastic properties. Compared to unmodified SiO nanoparticles, introducing SiO nanoparticles with boronic acid on their surface improved the structural integrity and stability of the hydrogel. In addition, nanoparticle-reinforced hydrogels showed increased stiffness and deformation resistance compared to controls. These properties were dependent on nanoparticle concentration. Injectability tests showed shear-thinning behavior for the modified hydrogels with injection force within clinically acceptable ranges and superior recovery.
ISSN:2310-2861
2310-2861
DOI:10.3390/gels10100638