Unveiling bulk and surface radiation forces in a dielectric liquid

Precise control over light-matter interactions is critical for many optical manipulation and material characterization methodologies, further playing a paramount role in a host of nanotechnology applications. Nonetheless, the fundamental aspects of interactions between electromagnetic fields and mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Light, science & applications science & applications, 2022-04, Vol.11 (1), p.103-103, Article 103
Hauptverfasser: Astrath, N. G. C., Flizikowski, G. A. S., Anghinoni, B., Malacarne, L. C., Baesso, M. L., Požar, T., Partanen, M., Brevik, I., Razansky, D., Bialkowski, S. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Precise control over light-matter interactions is critical for many optical manipulation and material characterization methodologies, further playing a paramount role in a host of nanotechnology applications. Nonetheless, the fundamental aspects of interactions between electromagnetic fields and matter have yet to be established unequivocally in terms of an electromagnetic momentum density. Here, we use tightly focused pulsed laser beams to detect bulk and boundary optical forces in a dielectric fluid. From the optical convoluted signal, we decouple thermal and nonlinear optical effects from the radiation forces using a theoretical interpretation based on the Microscopic Ampère force density. It is shown, for the first time, that the time-dependent pressure distribution within the fluid chiefly originates from the electrostriction effects. Our results shed light on the contribution of optical forces to the surface displacements observed at the dielectric air-water interfaces, thus shedding light on the long-standing controversy surrounding the basic definition of electromagnetic momentum density in matter. Laser pulses generate pressure waves due to electrostriction effects decoupling bulk and boundary optical forces in water, probed by the convoluted optical signal due to the resulting spatiotemporal pressure distribution.
ISSN:2047-7538
2095-5545
2047-7538
DOI:10.1038/s41377-022-00788-7