Generalized fractional integral inequalities by means of quasiconvexity

Using the newly introduced fractional integral operators in (Fasc. Math. 20(4):5-27, 2016 ) and (East Asian Math. J. 21(2):191-203, 2005 ), we establish some novel inequalities of the Hermite–Hadamard type for functions whose second derivatives in absolute value are η -quasiconvex. Results obtained...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in difference equations 2019-07, Vol.2019 (1), p.1-11, Article 262
1. Verfasser: Nwaeze, Eze R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using the newly introduced fractional integral operators in (Fasc. Math. 20(4):5-27, 2016 ) and (East Asian Math. J. 21(2):191-203, 2005 ), we establish some novel inequalities of the Hermite–Hadamard type for functions whose second derivatives in absolute value are η -quasiconvex. Results obtained herein give a broader generalization to some existing results in the literature by choosing appropriate values of the parameters under consideration. We apply our results to some special means such as the arithmetic, geometric, harmonic, logarithmic, generalized logarithmic, and identric means to obtain more results in this direction.
ISSN:1687-1847
1687-1839
1687-1847
DOI:10.1186/s13662-019-2204-3