Generalized fractional integral inequalities by means of quasiconvexity
Using the newly introduced fractional integral operators in (Fasc. Math. 20(4):5-27, 2016 ) and (East Asian Math. J. 21(2):191-203, 2005 ), we establish some novel inequalities of the Hermite–Hadamard type for functions whose second derivatives in absolute value are η -quasiconvex. Results obtained...
Gespeichert in:
Veröffentlicht in: | Advances in difference equations 2019-07, Vol.2019 (1), p.1-11, Article 262 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Using the newly introduced fractional integral operators in (Fasc. Math. 20(4):5-27,
2016
) and (East Asian Math. J. 21(2):191-203,
2005
), we establish some novel inequalities of the Hermite–Hadamard type for functions whose second derivatives in absolute value are
η
-quasiconvex. Results obtained herein give a broader generalization to some existing results in the literature by choosing appropriate values of the parameters under consideration. We apply our results to some special means such as the arithmetic, geometric, harmonic, logarithmic, generalized logarithmic, and identric means to obtain more results in this direction. |
---|---|
ISSN: | 1687-1847 1687-1839 1687-1847 |
DOI: | 10.1186/s13662-019-2204-3 |