Objective and subjective measures of sleep initiation are differentially associated with DNA methylation in adolescents

Introduction The onset of puberty is associated with a shift in the circadian timing of sleep, leading to delayed sleep initiation [i.e., later sleep onset time (SOT)] due to later bedtimes and/or longer sleep onset latency (SOL). Several genome-wide association studies (GWAS) have identified genes...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical epigenetics 2023-08, Vol.15 (1), p.1-136, Article 136
Hauptverfasser: Larsen, Michael, He, Fan, Kawasawa, Yuka Imamura, Berg, Arthur, Vgontzas, Alexandros N, Liao, Duanping, Bixler, Edward O, Fernandez-Mendoza, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Introduction The onset of puberty is associated with a shift in the circadian timing of sleep, leading to delayed sleep initiation [i.e., later sleep onset time (SOT)] due to later bedtimes and/or longer sleep onset latency (SOL). Several genome-wide association studies (GWAS) have identified genes that may be involved in the etiology of sleep phenotypes. However, circadian rhythms are also epigenetically regulated; therefore, epigenetic biomarkers may provide insight into the physiology of the pubertal sleep onset shift and the pathophysiology of prolonged or delayed sleep initiation. Results The gene-wide analysis indicated differential methylation within or around 1818 unique genes across the sleep initiation measurements using self-report, actigraphy (ACT), and polysomnography (PSG), while GWAS-informed analysis yielded 67 genes. Gene hits were identified for bedtime (PSG), SOL (subjective, ACT and PSG) and SOT (subjective and PSG). DNA methylation within 12 genes was associated with both subjective and PSG-measured SOL, 31 with both ACT- and PSG-measured SOL, 19 with both subjective and ACT-measured SOL, and one gene (SMG1P2) had methylation sites associated with subjective, ACT- and PSG-measured SOL. Conclusions Objective and subjective sleep initiation in adolescents is associated with altered DNA methylation in genes previously identified in adult GWAS of sleep and circadian phenotypes. Additionally, our data provide evidence for a potential epigenetic link between habitual (subjective and ACT) SOL and in-lab SOT and DNA methylation in and around genes involved in circadian regulation (i.e., RASD1, RAI1), cardiometabolic disorders (i.e., FADS1, WNK1, SLC5A6), and neuropsychiatric disorders (i.e., PRR7, SDK1, FAM172A). If validated, these sites may provide valuable targets for early detection and prevention of disorders involving prolonged or delayed SOT, such as insomnia, delayed sleep phase, and their comorbidity. Keywords: Sleep initiation, Epigenetics, DNA methylation, Sleep latency, Bedtime
ISSN:1868-7083
1868-7075
1868-7083
1868-7075
DOI:10.1186/s13148-023-01553-2