A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function

This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Researches in mathematics (Online) 2024-07, Vol.32 (1), p.16-32
Hauptverfasser: Chaudhary, K.K., Rao, S.B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generalized hypergeometric function denoted by _{2}{{R}_{1}}^{\upsilon ,q}(\mathfrak{z})$ and discuss its properties and connections with q-Wright function and q-versions of generalized Mittag-Leffler functions. We get the q-integral transforms such as q-Mellin, q-Euler (beta), q-Laplace, q-sumudu, and q-natural transforms of Wright-type generalized q-hypergeometric function. This article contributes to the understanding of hypergeometric functions in q-calculus.
ISSN:2664-4991
2664-5009
DOI:10.15421/242402