A study on unification of generalized hypergeometric function and Mittag-Leffler function with certain integral transforms of generalized basic hypergeometric function
This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generali...
Gespeichert in:
Veröffentlicht in: | Researches in mathematics (Online) 2024-07, Vol.32 (1), p.16-32 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This research article explores some new properties of generalized hypergeometric function and its q-analogue. The connections between _{2}{{R}_{1}}^{\upsilon }(\mathfrak{z})$, the Wright function, and generalized Mittag-Leffler functions are explored. The authors introduce the q-analogue of generalized hypergeometric function denoted by _{2}{{R}_{1}}^{\upsilon ,q}(\mathfrak{z})$ and discuss its properties and connections with q-Wright function and q-versions of generalized Mittag-Leffler functions. We get the q-integral transforms such as q-Mellin, q-Euler (beta), q-Laplace, q-sumudu, and q-natural transforms of Wright-type generalized q-hypergeometric function. This article contributes to the understanding of hypergeometric functions in q-calculus. |
---|---|
ISSN: | 2664-4991 2664-5009 |
DOI: | 10.15421/242402 |