Neural substrates of human fear generalization: A 7T-fMRI investigation
Fear generalization - the tendency to interpret ambiguous stimuli as threatening due to perceptual similarity to a learned threat – is an adaptive process. Overgeneralization, however, is maladaptive and has been implicated in a number of anxiety disorders. Neuroimaging research has indicated severa...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2021-10, Vol.239, p.118308-118308, Article 118308 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Fear generalization - the tendency to interpret ambiguous stimuli as threatening due to perceptual similarity to a learned threat – is an adaptive process. Overgeneralization, however, is maladaptive and has been implicated in a number of anxiety disorders. Neuroimaging research has indicated several regions sensitive to effects of generalization, including regions involved in fear excitation (e.g., amygdala, insula) and inhibition (e.g., ventromedial prefrontal cortex). Research has suggested several other small brain regions may play an important role in this process (e.g., hippocampal subfields, bed nucleus of the stria terminalis [BNST], habenula), but, to date, these regions have not been examined during fear generalization due to limited spatial resolution of standard human neuroimaging. To this end, we utilized the high spatial resolution of 7T fMRI to characterize the neural circuits involved in threat discrimination and generalization. Additionally, we examined potential modulating effects of trait anxiety and intolerance of uncertainty on neural activation during threat generalization. In a sample of 31 healthy undergraduate students, significant positive generalization effects (i.e., greater activation for stimuli with increasing perceptual similarity to a learned threat cue) were observed in the visual cortex, thalamus, habenula and BNST, while negative generalization effects were observed in the dentate gyrus, CA1, and CA3. Associations with individual differences were underpowered, though preliminary findings suggested greater generalization in the insula and primary somatosensory cortex may be correlated with self-reported anxiety. Overall, findings largely support previous neuroimaging work on fear generalization and provide additional insight into the contributions of several previously unexplored brain regions. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2021.118308 |