New Contour Design Method for Rocket Nozzle of Large Area Ratio

A rocket engine for space propulsion usually has a nozzle of a large exit area ratio. The nozzle efficiency is greatly affected by the nozzle contour. This paper analysed the effect of the constant capacity ratio in Rao’s method through the design process of an apogee engine. The calculation results...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Aerospace Engineering 2019, Vol.2019 (2019), p.1-8
Hauptverfasser: Sun, Dechuan, Feng, Qiang, Luo, Tianyou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rocket engine for space propulsion usually has a nozzle of a large exit area ratio. The nozzle efficiency is greatly affected by the nozzle contour. This paper analysed the effect of the constant capacity ratio in Rao’s method through the design process of an apogee engine. The calculation results show that increasing the heat capacity ratio can produce an expansion contour of smaller expansion angle and exit area ratio. A simple modification of Rao’s method based on thermally perfect gas assumption was made and verified to be more effective. The expansion contour designed by this method has much thinner expansion section and higher performance. For the space engine, a new extension contour type for the end section of the nozzle is proposed. The extension curve bent outward with increasing expansion angle increases the vacuum specific impulse obviously.
ISSN:1687-5966
1687-5974
DOI:10.1155/2019/4926413