Structural State and Thermodynamic Stability of Fe-B-C Alloys

The studies were performed for the specimens of Fe-B-C alloys with boron content of 0.005–7.0 wt.% and carbon content of 0.4–5.5 wt.%, the rest was iron. As a result of the experiment carried out in this work, the phase composition and phase transformations occurring in the alloys are investigated a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fìzika ì hìmìâ tverdogo tìla (Online) 2019-12, Vol.20 (4), p.437-444
Hauptverfasser: Filonenko, N.Yu, Galdina, A. N., Babachenko, А.I., Kononenko, G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The studies were performed for the specimens of Fe-B-C alloys with boron content of 0.005–7.0 wt.% and carbon content of 0.4–5.5 wt.%, the rest was iron. As a result of the experiment carried out in this work, the phase composition and phase transformations occurring in the alloys are investigated and the liquidus surface is constructed; it is shown that the point with minimum temperature of 1375 K at the liquidus surface is observed at boron content of 2.9 wt.% and carbon content of 1.3 wt. %. For the first time, considering the contribution of the first degree approximation of high-temperature expansion of thermodynamic potential into the Gibbs energy of Fe-B-C melt, we obtain the surface of thermodynamic stability of Fe-B-C melt, depending on temperature and content of boron and carbon in the alloy. The findings show that in order to obtain the homogeneous Fe-B-C melt, which does not contain micro-inhomogeneous structures in the form of short-range microregions, it is necessary to perform overheating more than to 150 K.
ISSN:1729-4428
2309-8589
DOI:10.15330/pcss.20.4.437-444