Strong Coupling Cavity QED with Gate-Defined Double Quantum Dots Enabled by a High Impedance Resonator

The strong coupling limit of cavity quantum electrodynamics (QED) implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information proces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. X 2017-03, Vol.7 (1), p.011030, Article 011030
Hauptverfasser: Stockklauser, A., Scarlino, P., Koski, J. V., Gasparinetti, S., Andersen, C. K., Reichl, C., Wegscheider, W., Ihn, T., Ensslin, K., Wallraff, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The strong coupling limit of cavity quantum electrodynamics (QED) implies the capability of a matterlike quantum system to coherently transform an individual excitation into a single photon within a resonant structure. This not only enables essential processes required for quantum information processing but also allows for fundamental studies of matter-light interaction. In this work, we demonstrate strong coupling between the charge degree of freedom in a gate-defined GaAs double quantum dot (DQD) and a frequency-tunable high impedance resonator realized using an array of superconducting quantum interference devices. In the resonant regime, we resolve the vacuum Rabi mode splitting of size 2g/2π=238MHz at a resonator linewidth κ/2π=12MHz and a DQD charge qubit decoherence rate of γ2/2π=40MHz extracted independently from microwave spectroscopy in the dispersive regime. Our measurements indicate a viable path towards using circuit-based cavity QED for quantum information processing in semiconductor nanostructures.
ISSN:2160-3308
2160-3308
DOI:10.1103/PhysRevX.7.011030