Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock

Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature communications 2016-08, Vol.7 (1), p.12696-12696, Article 12696
Hauptverfasser: Dang, Fabin, Sun, Xiujie, Ma, Xiang, Wu, Rong, Zhang, Deyi, Chen, Yaqiong, Xu, Qian, Wu, Yuting, Liu, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although food availability is a potent synchronizer of the peripheral circadian clock in mammals, the underlying mechanisms are unclear. Here, we show that hepatic Bmal1, a core transcription activator of the molecular clock, is post-transcriptionally regulated by signals from insulin, an important hormone that is temporally controlled by feeding. Insulin promotes postprandial Akt-mediated Ser42-phosphorylation of Bmal1 to induce its dissociation from DNA, interaction with 14-3-3 protein and subsequently nuclear exclusion, which results in the suppression of Bmal1 transcriptional activity. Inverted feeding cycles not only shift the phase of daily insulin oscillation, but also elevate the amplitude due to food overconsumption. This enhanced and reversed insulin signalling initiates the reset of clock gene rhythms by altering Bmal1 nuclear accumulation in mouse liver. These results reveal the molecular mechanism of insulin signalling in regulating peripheral circadian rhythms. The effect of the liver clock is modified by food entrainment via Bmal1/Clock core machinery. Here the authors show that insulin promotes postprandial Akt-dependent phosphorylation of Bmal1, resulting in association with 14-3-3 and Bmal1 shuttling out of the nucleus, thereby disrupting Bmal1 transcriptional effects on the clock.
ISSN:2041-1723
2041-1723
DOI:10.1038/ncomms12696