PARP1 deficiency protects against hyperglycemia-induced neointimal hyperplasia by upregulating TFPI2 activity in diabetic mice

Diabetes mellitus (DM) promotes neointimal hyperplasia, characterized by dysregulated proliferation and accumulation of vascular smooth muscle cells (VSMCs), leading to occlusive disorders, such as atherosclerosis and stenosis. Poly (ADP-ribose) polymerase 1 (PARP1), reported as a crucial mediator i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Redox biology 2021-10, Vol.46, p.102084-102084, Article 102084
Hauptverfasser: Wang, Zhao-yang, Guo, Meng-qi, Cui, Qing-ke, Yuan, Haitao, Shan-ji Fu, Liu, Bin, Xie, Fei, Qiao, Wen, Cheng, Jie, Wang, Ying, Zhang, Ming-xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Diabetes mellitus (DM) promotes neointimal hyperplasia, characterized by dysregulated proliferation and accumulation of vascular smooth muscle cells (VSMCs), leading to occlusive disorders, such as atherosclerosis and stenosis. Poly (ADP-ribose) polymerase 1 (PARP1), reported as a crucial mediator in tumor proliferation and transformation, has a pivotal role in DM. Nonetheless, the function and potential mechanism of PARP1 in diabetic neointimal hyperplasia remain unclear. In this study, we constructed PARP1 conventional knockout (PARP1−/−) mice, and ligation of the left common carotid artery was performed to induce neointimal hyperplasia in Type I diabetes mellitus (T1DM) mouse models. PARP1 expression in the aorta arteries of T1DM mice increased significantly and genetic deletion of PARP1 showed an inhibitory effect on the neointimal hyperplasia. Furthermore, our results revealed that PARP1 enhanced diabetic neointimal hyperplasia via downregulating tissue factor pathway inhibitor (TFPI2), a suppressor of vascular smooth muscle cell proliferation and migration, in which PARP1 acts as a negative transcription factor augmenting TFPI2 promoter DNA methylation. In conclusion, these results suggested that PARP1 accelerates the process of hyperglycemia-induced neointimal hyperplasia via promoting VSMCs proliferation and migration in a TFPI2 dependent manner.
ISSN:2213-2317
2213-2317
DOI:10.1016/j.redox.2021.102084