Sustainable and Resilient Smart Water Grids: A Solution for Developing Countries

According to a United Nations report, the world population will increase from 7 billion to 9 billion by 2050. Further, the water stress level is more than 70% in 22 countries while in another 31 countries it is between 25% and 70%. More than 2 billion people live in these 53 countries which are all...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Emitter : International Journal of Engineering Technology 2021-06, Vol.9 (1), p.204-219
Hauptverfasser: Khattak, Khurram Shehzad, Jawwad, Muhammad, H. Khan, Zawar, Gulliver, T. Aron, Khan, Akhtar Nawaz, Khan, Mushtaq A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:According to a United Nations report, the world population will increase from 7 billion to 9 billion by 2050. Further, the water stress level is more than 70% in 22 countries while in another 31 countries it is between 25% and 70%. More than 2 billion people live in these 53 countries which are all underdeveloped. Water use has increased by 1% per year since the 1980s, so global demand is expected to rise by 30% by 2050. Thus, efficient water grid management is imperative to ensure there is sufficient water for the future. Information and Communication Technology (ICT) can be used to create smart water grids to optimize water distribution, reduce waste and leakage, and resolve quality and overuse issues. In this work, a low cost, real-time, reliable and sustainable IoT based solution called SmartTubewell is proposed for smart water grid management. It is composed of two components, a sensor node installed at tube wells and an application layer on Amazon Web Services (AWS) for data analysis, storage and processing. The sensor node is based on a Raspberry Pi with integrated current and voltage sensors and a local database. The sensor data is transmitted to AWS using a cellular (GPRS) network. A comparison between the proposed system and SCADA is presented which shows that SmartTubewell has a much lower cost. A field test with multiple tube wells in Peshawar, Pakistan indicates that this is a suitable solution for developing countries.
ISSN:2355-391X
2443-1168
DOI:10.24003/emitter.v9i1.595