A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet
With a higher penetration of distributed generation in the power system, the application of microgrids is expected to increase dramatically in the future. This paper proposes a novel method to design optimal droop coefficients of dispatchable distributed energy resources for a microgrid in the Energ...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2015-11, Vol.8 (11), p.12741-12764 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With a higher penetration of distributed generation in the power system, the application of microgrids is expected to increase dramatically in the future. This paper proposes a novel method to design optimal droop coefficients of dispatchable distributed energy resources for a microgrid in the Energy Internet considering the volatility of renewable energy generation, such as wind and photovoltaics. The uncertainties of renewable energy generation are modeled by a limited number of scenarios with high probabilities. In order to achieve stable and economical operation of a microgrid that is also suitable for plug-and-play distributed renewable energy and distributed energy storage devices, a multi-objective optimization model of droop coefficients compromising between operational cost and the integral of time-weighted absolute error criterion is developed. The optimization is solved by using a differential evolution algorithm. Case studies demonstrate that the economy and transient behavior of microgrids in the Energy Internet can both be improved significantly using the proposed method. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en81112338 |