Advanced Stimuli-Responsive Structure Based on 4D Aerogel and Covalent Organic Frameworks Composite for Rapid Reduction in Tetracycline Pollution
Intelligentization of materials and structures is an important trend. Herein, the stimuli-responsive 4D aerogel is used as a smart substrate for rapid reduction in tetracycline (TC) pollution, in which this smart stimuli-responsive substrate is designated as P4D. Its fourth dimension originates from...
Gespeichert in:
Veröffentlicht in: | Molecules (Basel, Switzerland) Switzerland), 2023-07, Vol.28 (14), p.5505 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intelligentization of materials and structures is an important trend. Herein, the stimuli-responsive 4D aerogel is used as a smart substrate for rapid reduction in tetracycline (TC) pollution, in which this smart stimuli-responsive substrate is designated as P4D. Its fourth dimension originates from stimuli-responsive characteristics with time evolution. Meanwhile, the covalent organic frameworks (COFs) composite is constructed by BiPO
and triazine-based sp
carbon-conjugated g-C
N
-COF (COF-1), which is another key aspect of COF-1/BiPO
@P4D for rapid photocatalytic degradation regarding TC pollution. This emerging smart structure of COFs@P4D can fix programmable temporary state and recover permanent state under thermal or water stimulus without any complicated equipment. Its performance can be tailored by structure, composition, and function. Compared with traditional powder-form photocatalysts, this stimuli-responsive structure provides attractive advantages, such as high permeable framework, self-adaptivity, flexibly customized functional groups, and fast reduction in TC pollution. The predictable development of COFs@P4D could draw much attention for various promising applications in pollution treatment and sensors. |
---|---|
ISSN: | 1420-3049 1420-3049 |
DOI: | 10.3390/molecules28145505 |