Structure and Properties of Ti-Al-Ta and Ti-Al-Cr Cladding Layers Fabricated on Titanium

Being one of the most high-demand structural materials, titanium has several disadvantages, including low resistance to high-temperature oxidation and wear. The properties of titanium and its alloys can be improved by applying protective intermetallic coatings. In this study, 2 mm thick Ti-Al-Ta and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metals (Basel ) 2021-07, Vol.11 (7), p.1139
Hauptverfasser: Lazurenko, Daria V., Golkovsky, Mikhail G., Stark, Andreas, Pyczak, Florian, Bataev, Ivan A., Ruktuev, Alexey A., Petrov, Ivan Yu, Laptev, Ilia S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Being one of the most high-demand structural materials, titanium has several disadvantages, including low resistance to high-temperature oxidation and wear. The properties of titanium and its alloys can be improved by applying protective intermetallic coatings. In this study, 2 mm thick Ti-Al-Ta and Ti-Al-Cr layers were obtained on titanium workpieces by a non-vacuum electron-beam cladding. The microstructure and phase compositions of the samples were different for various alloying elements. The Cr-containing layer consisted of α2, γ, and B2 phases, while the Ta-containing layer additionally consisted of ω′ phase (P3¯m1). At the same atomic concentrations of aluminum and an alloying element in both layers, the volume fraction of the B2/ω phase in the Ti-41Al-7Ta alloy was significantly lower than in the Ti-41Al-7Cr alloy, and the amount of γ phase was higher. The Ti-41Al-7Cr layer had the highest wear resistance (2.1 times higher than that of titanium). The maximum oxidation resistance (8 times higher compared to titanium) was observed for the Ti-41Al-7Ta layer.
ISSN:2075-4701
2075-4701
DOI:10.3390/met11071139