ENGEP: advancing spatial transcriptomics with accurate unmeasured gene expression prediction
Imaging-based spatial transcriptomics techniques provide valuable spatial and gene expression information at single-cell resolution. However, their current capability is restricted to profiling a limited number of genes per sample, resulting in most of the transcriptome remaining unmeasured. To over...
Gespeichert in:
Veröffentlicht in: | Genome Biology 2023-12, Vol.24 (1), p.293-28, Article 293 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Imaging-based spatial transcriptomics techniques provide valuable spatial and gene expression information at single-cell resolution. However, their current capability is restricted to profiling a limited number of genes per sample, resulting in most of the transcriptome remaining unmeasured. To overcome this challenge, we develop ENGEP, an ensemble learning-based tool that predicts unmeasured gene expression in spatial transcriptomics data by using multiple single-cell RNA sequencing datasets as references. ENGEP outperforms current state-of-the-art tools and brings biological insight by accurately predicting unmeasured genes. ENGEP has exceptional efficiency in terms of runtime and memory usage, making it scalable for analyzing large datasets. |
---|---|
ISSN: | 1474-760X 1474-7596 1474-760X |
DOI: | 10.1186/s13059-023-03139-w |