APPLICATION OF ATOMIC-FORCE MICROSCOPY FOR INVESTIGATION OF ANISOTROPY OF INTERPHACIAL ENERGY ON THE BOUNDARY OF THE METAL-ORIENTED SUBSTRATE
A method we developed for determining anisotropy of the interfacial energy in a solid system was used to investigate nickel nanocrystals on an oriented silicon substrate. Nickel particles were obtained by the vapor-liquid-solid mechanism, i.e. by vacuum deposition on a substrate. The surface of the...
Gespeichert in:
Veröffentlicht in: | Fiziko-himičeskie aspekty izučeniâ klasterov, nanostruktur i nanomaterialov (Online) nanostruktur i nanomaterialov (Online), 2019-12 (11), p.16-25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng ; rus |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A method we developed for determining anisotropy of the interfacial energy in a solid system was used to investigate nickel nanocrystals on an oriented silicon substrate. Nickel particles were obtained by the vapor-liquid-solid mechanism, i.e. by vacuum deposition on a substrate. The surface of the sample was visualized by the atomic force microscopy in the tapping mode. A analysis of AFM images made it possible to establish the geometric characteristics of nickel crystals and to investigate the relief. Based on the data obtained, the model shape and position of the Wulf point of the equilibrium crystals on the substrate are determined. The dependences of the characteristic value A/V^(2/3) on the effective contact angle in two directions are constructed and it is shown that in this system the interfacial energy of the crystal-substrate interface is highly anisotropic. |
---|---|
ISSN: | 2226-4442 2658-4360 |
DOI: | 10.26456/pcascnn/2019.11.016 |